
Self-avoiding walk connectivity constant and theta point on percolating lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 851

(http://iopscience.iop.org/0305-4470/24/4/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) 851-860. Printed in the UK 
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Abstract. The average connectivity constant @ of self-avoiding walks (SAWS) is obtained 
from exact enumeration of SAWS an  Monte Carlo generated percolating clusters i n  a 
randomly diluted square lattice. Far averages over the (infinite) percolating cluster, p 
decreases almost linearly with bond dilution (I-p],  where p i s  the bond occupation 
concentation. We find p ( p , ) =  l.3l-tO.03 at the percolation threshold pr and could not 
detect any significant difference between p ( p J  and p , p ( l ) .  The vanation of &point for 

zeros. Within the limited accuracy o f  our analysis, its variation with dilution is observed 
its being quite weak and the 8-point increases somewhat (compared to pure lattice value) 
near p c ;  we find a non-vanishing .%point ( K , ( p . )  ~ 0 . 5 9 .  where K, = J / k O )  on the square 
lattice percolation cluster at p , .  

ShWi on the l i m e  !atti?? with di!??!iCZ is 1!SO estimnted. nnn!ysi.g the panitian fZ.Cti0" 

L !n!mnodin!! 

The statistics of self-avoiding walks (SAWS) on lattices with quenched random impurities 
is presently being investigated with keen interest (see e.g. [1,2] for recent reviews). 
So far, most of the studies investigated the average size of the SAWS by measuring the 
end-to-end distance of the walks and estimating the associated size exponent on 
percolation clusters 131. 

The statistics of the (lattice) SAW model of linear polymers (in dilute solutions) 
also involve some less universal or non-universal quantities. For example, the total 
number of SAW configurations C,, or the total number of SAW loops L N ,  grow (on 
perfect lattices) with the step size N as [4]. 

C, -p"Y-' and L N - p N N - - ( 2 - ' r '  ( 1 )  

where + is called the SAW connectivity constant which depends on the lattice and  y 
a n d  a are universal exponents [ 5 ]  dependent only on lattice dimension. The connectivity 
constants p for walks and  loops are identical for the perfect lattice [4,5] and have 
been estimated accurately on various regular lattices; e.g. p -2.638, 4.151, 4.684 for 
square, triangular and simple cubic lattices respectively [6]. With attractive interaction 
( J )  between the nearest-neighbour sites visited by a SAW, the SAWS undergo a collapse 
transition (average end-to-end distance square R L  - N"', U = uc= I /d  for collapse; d 
is the lattice dimension) at temperatures below the &point and for T >  0 one gets the 
normal excluded volume (random SAW) phase ( U  = uSAW= 3/(2+ d )  [ 5 ] ) .  At T = 8 this 
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lattice model is believed [7] to have a ‘tricritical’ 0-point transition. There have been 
several attempts to estimate the (lattice) 0-point, using Monte Carlo [XI, series analysis 
[9,10] etc for various regular lattices; e.g. the existing estimates are K ,  (=l/kO) = 

0.65 * 0.03 and 0.41 i0 .13  for square and triangular lattices respectively [X-1 I]. 
As mentioned earlier there have been several attempts to investigate the critical 

behaviour of the SAW statistics on (quenched) random lattices; specifically in estimating 
the size exponent U (uSAW [l-31 and vg [12,13]) and other exponents like y and a 
[2j, FG:  SAW^ DX the perco!a:izg frac:a!. !!owever, cozpa:ab!e ixestigatiox: f ~ :  the 
variation with disorder of the non-universal quantities like the connectivity constant 
p or of the 0-point etc on quenched random dilute lattice have not been made. Let 
us consider the SAW statistics on randomly (say, bond) diluted lattices with (bond) 
occupation probability p .  On various perfect lattices (at p = l) ,  there exist good estimates 
for quantities like p [4] and K H  [9-111 as mentioned before (e.g. p =2.64 and K ,  = 0.65 
on sqcare !anice). Simi!ar!y very accorate estimates for !he perco!a!ion !hresho!d ( pc) 
of various lattices, beyond which the lattices loose their macroscopic connectivity, are 
also available [14] (e.g. pc= 1 /2  for bond dilute square lattice). It is quite obvious that 
p or K ,  would be affected by increasing lattice dilution. However, there is not much 
literature estimating these (connectivity and 8 )  constants at different p and specifically 
at p c ,  Of course, if the SAW is not confined to the percolation cluster alone and if one 
averages the statistics over all the clusters (including all the finite clusters) of the dilute 
lattice, then p(p) =ppe exactly, where p o = p  ( p =  I ) .  This is trivial and can he seen 
straightforwardly: since a SAW does not visit any bond more than once, the occupation 
operator of each bond (step) is independently averaged (with average value p ) ,  and 
thus the effective connectivity p of each step renormalizes to pp. Since, however, each 
existing bond on the infinite percolating cluster has a non-trivial (correlated) probability 
of occurrence. a similar argument cannot be applied to the SAWS confined to the infinite 
or percolating cluster only [l]; although an early enumeration estimate suggested 
p ( p )  = p . p u  up to p .  for SAW$ on the percolation cluster alone [15]. It turns out, that 
this difference from linear relationship, even for infinite or percolating cluster averaging, 
is subtle and, in particular, the difference between p ( p J  and p c ’ p o  could not be 
detected. Similarly, the estimates of # ( p ) ,  specially of 8(p,) (if non-vanishing), are 
also quite interesting [12, 131, and are not trivially known from the estimate of 8, (E# 
at p = 1) on  perfect lattices and the percolation threshold (pJ on the respective lattices. 
In fact, it is possible to argue that, with the percolation cluster being extremely ramified, 
the nearest-neighbour (or, of that matter, any finite range) attractive interaction will 
not support any statistically significant order towards collapse, suggesting O ( p J  = 0. 
On the other hand, in an effective n-vector field Hamiltonian, with the disorder 
(averaging) induced replica coupled term being negative and of order p(1 - p ) ,  and 
quadratic field (excluded volume) term being proportional to ( T  - #J, one might expect 
[16,17] an increase of #-point with disorder. Apart from a very weak indication for 
an initial decrease we find a slight increase in the &point value, with increasing lattice 
dilution near p c .  

2. Series studies and results 

We have studied here the variation of the SAW connectivity constant p and the 0-point 
on the infinite (percolation) cluster, with dilution concentration p .  on a bond diluted 
square lattice. The size of the lattice taken in this simulation is 100 x 100. For a particular 
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concentration of bonds ( p  a p J ,  the disordered lattice is first generated using a Monte 
Carlo program and then the infinite percolating cluster (which spans the lattice in all 
directions) is isolated. On that infinite cluster, starting from a (suitably chosen) central 
site, we enumerate exactly all SAW configurations of a given step size N (total number 
of SAWS C,) .  Together with that, we have also calculated the total number of loops 
L,  (SAWS whose end point is a nearest-neighbour of the starting point). For a single 
disordered lattice configuration, the values of C ,  and L, are typically around 6.9 x IO6, 
, .AX IU ariu O . Y X L U ,  L . J X  IU lor p=v.r  an0 " . I  rcspecriveiy  IO^ A'= i7. We went 
u p  to N = 30 for p = pc  = 0.5 where C ,  = 2.3 x IO' and L,  = 8.3 x 10' for N = 29. In 
fact, large fluctuations are observed in these quantities from configuration to configura- 
tion and these quantities themselves are not self-averaging. We find that the effective 
connective constants obtained from the ratio C,/C,_, or LN/LN- -2  are quite well 
behaved and are self-averaging quantities; these are shown in figures 1 and 2. Clearly, 

constants evaluated from CN are much more accurate compared to those evaluated 
from L ,  values (see figure 2). It may be noted, from figure 1 ,  that the slopes of the 
curves C,/C, - ,  against 1 /N seem to have a change of sign nearp ~ 0 . 6 5 .  The number 
CNM of N-stepped walks with M nearest-neighbour bonds, created by visits to 
nearest-neighbour sites, is also calculated (XM C,, = C, ) .  The values of c,, 
(=CWM/CN) ,  for different bond concentrations p are given in table I .  Maximum step 
size for the enumerated SAWS was fixed between 17 and 30 and the averages were taken 
over 10 to 150 lattice congfiruations, depending o n  the lattice occupation concentration 
(p) .  For this simulation we have used 16 hours CPU time of CYBER and 20 hours of 

1 0 . .  * A 5  .-A n n . . * n 4  1 -., . A 3  c.- A n  ~ ~> I I L l  ~~~ F~ 

*he ..nl.._o - F  r ha:..- ".. ,.-A-- -C -nl- :+..A.. &LA.- tL..-- -P P th- 
111G IaLIuSa U1 L, "CULg 'U1 "."Cl ut "la~"1L""~ lCJJ L,,'l,, LllVJC U, c,, L l l c i  & U I I I I C C L I " L  

__ 

HORIZON-Ill Computer 

p - 0.91 

0.90 

0.80 

0 OIU 0.08 0.12 

' IN  
~ 

Figure 1. Plot of (Cw/CN.2)  (averaged over random configurations) against l l  N forsAwl 
an dilute square lattic~. c,, values ( N - m )  are obtained by linear fitting of  there points. 

The total number of SAW configuration C N  and the total number of SAW loops L, 
on percolating clusters are fitted to the asymptotic forms as C ,  - p c  N'-' and L ,  - 
P:N-'2-"'  in ' the limit N + m. In figure 1 and figure 2 we have plotted the configur- 
ationally averaged (over different percolating clusters) values of CN/CN-2 and 
L, /L ,_ ,  (for finite steps N )  respectively against 1,". The values of pw and pL in 
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6.00 P- 0.9 P.O.8 

P.0.55 p.0.5 3,0rKl 1.00 . .. 
0 0.04 0.08 0.12 0.04 0.08 0.12 

1/N 
~ 

Figure 2. Plot of  ( L N /  LN-?) (averaged over random configurations) against I /  N for loops 
on dilute square lattice. pL w h e s  ( N - a )  are obtained by linear fitting of these points. 

the limit N + CC were estimated from figure 1 and figure 2 respectively. Similar averages 
were also investigated earlier and the non-triviality of the these types of average over 
the percolating cluster are discussed there [15]. In figure 3 we have plotted, against 
bond dilution (1-p),  the (lattice configuration averaged) values pw and pL (for 
.. N + a). The average connec!ivi!y c~ns!an! decreases almost linearly with decreasing 
lattice bond concentration. We find p w ( p c )  = 1.307*0.001 and pL(pc) = 1.4*0.2 (com- 
pared with pL,.p,=1.319, with po= 2.638 [6] and p,=O.5 [14]). It may be noted here 
that even with better statistics and larger system size (compared to [15]), no significant 
difference from the linear relationship (for p ( p )  with p) is observed. It may also be 
noted that because of the presence of (singly connected) links in the infinite percolation 
cluster a t  pc, no SAW loop was expected on the p,-cluster [l], suggesting pL(p)+O at 
p. unlike p w ( p )  which should remain greater than unity at pc (as more than one SAW 

configuration is possible in the percolation cluster). However, we could not detect any 
significant difference between pw and pL at any p. 

For estimating, the (lattice) 0-point, we analyse the zeros of the SAW partition 
function [9], defined as 

z, = CNMEI? (2) 
M 

where E =exp(-JlkT),  J being the interaction between two nearest-neighbour sites 
visited by a SAW, and the normalized average cNM is found out from the configuration 
averaged values of CNM/CN which are obtained from the previous simulations (see 
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Table I .  Normalized (=,%) for generating the partition function polynomial Z,\ in 
equation (2). n denotes the number of dilute lattice configurations over which the statistm 
has been averaged. 

p = 0 . 5  p = O . 5 5  p = 0 . 6  p = 0.7 p=0.8 
n = I27 n = 7 8  n = 4 0  n = 20 * = l o  

M N = 3 0  N = 2 1  N=?l  N=19 n=18 

0 0.03i 027 
I 0.085721 
2 0,153590 
3 0.180 198 
4 0.170312 
5 0.136366 
6 0.097212 
? O.OS3?!? 
8 0.038050 
9 0.021 409 

I O  0.011 388 
I 1  0.006 168 
12 0.002760 
13 0.001 200 
14 0.000437 
I5 0.000 158 
16 0.000058 
17 0.000025 
18 0.000007 
19 0.000001 
20 0.000000 

0.084 803 
0.173 491 
0.206914 
0.186898 
0.141 756 
0.097 296 
0.056 124 
0.929 9?0 
0.014 596 
0.005 669 
0.002 376 
0.000 860 
0.000 136 
0.000 010 

0.075 06u 
0.166922 
0.225 175 
0.197 340 
0. I44 22 I 
0.089 360 
0.053 ! I 1  
0.927 8 ! 5  
0.012 224 
0.005 736 
0.001 935 
0.000 750 
0.000 320 
0.000 03 I 

0.093?% 
0.186 509 
0.220 269 
0.189 817 
0.137715 
0.085 461 
0.047 107 
0.023 424 
0.010 161 
0.003 973 
0.001 543 
0.000 306 
0,000 007 

0. i i3  5 i4  
0.21 1 628 
0.232 375 
0. I85 632 
0.124 852 
0.071 405 
0.035 699 
9.0!6062 
0.006 144 
0.002 I32 
0.000 536 
o.0aa 022 

p = 0.9 p = 0.95 
n = 6  n = 6  
n=17 n=17 

0. i i j456 O.ii536ii 
0.212957 0.214366 
0.232 024 0.232 196 
0,183 662 0.183912 
0.123597 0.123407 
0.071 I 1  I 0.070 087 
0.037 295 0.036432 
(I.016 024 n.n!l 243 
0.006 862 0.006 3 I 1  
0.002 723 0.002 418 
0,000 289 0.000 267 

1.00 
a o m  0.20 a.30 o m  0.50 t 

11-P) 

Figure3. 'Phase diagram' ( r w  and f i L  against ( I  - P I )  for SAWS on a dilute square lattice. 
The statistical errors in cW are of the symbol (filled circle) sire while those for cL (open 
circle) are indicated. The straight line fit with the filled circles indicates the nature of 
variation of F with dilution. 
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table 1). It may be noted from table 1 that the numbers of nearest-neighbour bonds 
between points visited by SAW on the percolation cluster are considerable even at p c  
(fractions are finite). This suggests a possibility of finite 8-point on percolation cluster 
with attractive interactions between such nearest-neighbour bonds. The transition point 
can be obtained from knowledge of the zeros of the above partition function in the 
complex E-plane (or complex temperature), using the Yang-Lee theorem [IO]. We 
have evluated the zeros using the Lin-Bairstow method. In figure 4 we have plotted 
all the zeros of Z, for a number of finite stepped  SAW^ for each concentration of bond 
dilution. Also in figure 5 we have plotted a subset of the above zeros formed by the 
right furthest zeros (with maximum value of the real part) for various bond dilution 
concentrations. From figure 4 and figure 5 it is evident that, in the limit N+m,  the 
zeros of the partition function extrapolates to the positive real axis. In  figure 6 we 
have plotted the real part of the subset of zeros shown in figure 5, as a function of 
l / N  for various concentrations p. Within our limits of accuracy, these points can be 
fitted to linear equations and the extrapolated values of the &point can be estimated 

P-0.90 p.0.80 

, .. 
2 ,  , , , 0 % S I 1  

- x ~ o  o in0 -zoo o 1.00 
1 
1.00 

X-. 

Figure 4. All the zeros of Z,v (from equation 2: with simulation results (cf table 1) for 
(-)) satisfying x > -2.0 and y > 0. 
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P - 0.90 P.O.80 

2 m  Vi0.55 

1.00 

T. 
-2.00 0 200 -1.00 1.00 

v -  

Figure 5. Furthest right zeros of Z, extracted from figure 4. 

in the limit N +m. This indicates the existence of some unique 9-point for  SAW^ even 
on the fractal. 

We observe that these (extrapolated) 0-values increase slightly (apart from an initial 
indication o i a  decreasej with increasing iattice diiution, and in figure 7 these extrapo- 
lated values (& - 0-') are plotted against dilution concentration. It may be noted that 
although such an increase in the 9-point value, with increasing lattice dilution, is 
somewhat unexpected in view of the ramified structure of the percolation cluster, this 
is not completely unjustified. In fact, as already mentioned before, such behaviour 
was indeed predicted [ 161, using an effective field theoretic Hamiltonian for the n-vector 
magnetic model on dilute iatiices in ihe n + 0 limit, using replica trick (cf [iSj): 

%=1 1 ( I  + 92)s; .S"+ 1 1 (US,, - U ) S , ,  .s,s:3.s:4s(9, + 92+ 9 3 +  9J 
4 "  UL.42. m.0 

41.U1 

Here S is the n-component spin vector, a = I ,  2 , .  . . , m is the replica index (coming 
from averaging over quenched randomness) and the limit m -f 0 is to be taken, U is a 

term giPes the 
replica coupling due to quenched disorder (with coupling strength g). For polymers 
in solvent U = (T-  0,)/9, [ 5 ] ;  9" here refers to the pure lattice 0-point value. As shown 
by Kim [IS], because of the simultaneous appearance of n and m sums for any closed 
loop which does not contribute in the n + 0 (SAW) and m + 0 (replica averaging) limits, 
the replica coupling effectively disappears in this n + 0 limit and the excluded volume 

[ T - 9 , - g 2 p ( l  - p ) 9 , ] / O o .  For u.,zO, one gets the usual SAW critical behaviour [ 5 ]  
in the n + O  limit and collapse occurs when u,,,<O. The tricritical 0-point behaviour 
occurs when uCn=O and S6 order term determines the fluctuation [ 5 ] .  @-point thus 
effectively increases [16, 171 with dilution; using the above formalism, the estimate is 

measure of the !'.'e body (rep-!si.ie) interaction, and L ' ~  g'p(! 

!! in the .hove Hami!tonian Can he cffec!ive!y rep!aced [!2! by ! 4 e l i = " - t ' =  

9 ( P ) - -  9 0 + g 2 P ( l  - P I .  
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3. Discussion 

Our present study indicates the same value for the self-avoiding walk and loop 
connectivity constants on a dilute lattice and in particular at p c ,  where the existence 
of singly connected links of the percolation cluster would suggest [ I ]  the loop con- 
nectivity constant be zero while for SAW, it would be greater than unity. Also, we could 
not detect any significant difference between p ( p c )  for the infinite percolating cluster 
averages and that for all cluster averages which is exactly pepo. The 0-point has been 
estimated here on such dilute lattices, analysing the partition function zeros. Our 
estimate for the 8-point being approximate (even on the perfect lattice), we did not 
perhaps get a very precise variation of 0( p ) .  However, there seems to be some indication 
of an increase in the 0-point value with dilution (a possible justification given in the 
last section), and we thus find a clearly non-vanishing value of the &point on the 
percolation cluster. In view of the extremely ramified structure of the percolation 
cluster, we believe this existence (non-zero value) of the 0-point is important and will 
help to see the effect of percolating fractals on the statistical effects of (@-point) 
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o.40 0.20 t 
0 
0 0.10 WO 0.30 0.40 0.50 

( 1  - P I  

Figure 7. K ,  values obtained from figure 6 are plotted against dilution concentration. 
Statistical errors are also indicated. The continuow line drawn through the points indicates 
the overall variation of average K,. 

excluded volume in linear polymers. The effect of percolation fractal on SAW statistics 
(for T >  O ( p , ) )  at p c ,  is very small and is still being debated [l-31. It has recently been 
pointed out [12, 131 that the effect of percolation fractal on the tricritical exponent at 
T = O ( p , )  is expected to be quite prominent (e.g. U, = 417 = 0.57 on pure two- 
dimensional lattices while vo = 0.68 on two-dimensional percolation clusters 1131). 
Such effects can be seen only if B ( p , )  is finite (non-zero), which our present study 
clearly indicates. 
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Note added in pvoof In the model for eslimitting the 0-point from the partition function in (2), all the 
N-step SAW canfigurations (an the percolating ~ l u ~ t e r  only) were enumerated and also the number of 
configurations with M nearest-neighbour bridges were counted independent of the cluster geometry (even 
vacant lattice bonds were assumed 10 convey the monomer-monomer interaction). This gave a slight increase 
in the 0-point value at p.,  as supponed by the filled theoretic estimate for the same (discussed in section 
2). which also implicitly assumes similar counting. 

If one considers the interaction only through the occupied bonds present in the percolating cluster. then 
we find the 0-paint to decrease considerably at p r .  Series resulls for N u p  to 30 and averaging over 160 
clusters at pc  give K,(p,) = 1.49*0.10, which is still quite large and non-vanishing (the 0-point at pr is about 
half of that a i  p = I ) .  

The linear relation @ ( p J  = p&", observed even on the percolation cluster, gets further ruppon from the 
newly published data for SAW. on Site diluted percolating lattices [19]. 
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